Kindle File Grid Cellular and Molecular Function in Glial Cells

Dr. Bernardo Castellano 2003-09-29

Although knowledge of the development and differentiation of glial cells has significantly increased in recent years, there are still many questions unanswered. The first section of the book presents an overview of the biology of glia and the molecular basis of their unique features and functions. It discusses the molecular biology of glia, including the regulation of gene expression in glial cells, the role of extracellular matrix proteins, and the importance of cell-cell interactions and signaling pathways. The second section of the book examines the role of glial cells in the development and maintenance of the nervous system. It covers the role of glial cells in the development of the nervous system, including the role of glial cells in the formation of neural tubes, the role of glial cells in the formation of the peripheral nervous system, and the role of glial cells in the formation of the central nervous system. The third section of the book focuses on the role of glial cells in the repair and regeneration of the nervous system. It discusses the role of glial cells in the repair of damaged neural tissue, the role of glial cells in the regeneration of sensory nerves, and the role of glial cells in the regeneration of motor nerves. The fourth section of the book examines the role of glial cells in the maintenance of the nervous system. It covers the role of glial cells in the maintenance of neural tissue, the role of glial cells in the maintenance of the blood-brain barrier, and the role of glial cells in the maintenance of the extracellular matrix. The fifth section of the book focuses on the role of glial cells in the development and maintenance of the immune system. It discusses the role of glial cells in the development of the immune system, the role of glial cells in the maintenance of the immune system, and the role of glial cells in the regulation of the immune system.

Dr. Andreas Reichenbach 2010-03-18

Müller cells may be used in the future for novel therapeutic strategies to protect neurons against apoptosis (for example, somatic gene therapy), or to manipulate neuronal activity (for example, optogenetics). Müller cells are therefore possible that neuronal damage induced by chemicals or neuropathic disease involves dissociation of glial-neuronal interactions. The Role of Glia in Neurotoxicity brings together experts in the neurosciences to provide a more complete understanding of the mechanisms involved in glia-neuronal interactions and to identify potential targets for therapeutic intervention.

Dr. Leif Hertz 2016-11-23

The many adverse effects of fetal alcohol exposure on behaviour and learning are caused by a multitude of effects on all three types of glia cells. Traumatic brain injury also exerts multifactorial effects, including microglia/astrocyte-induced secretion of neuroinflammatory molecules and axonal disruption and oligodendrocytic dysfunction. In normal brain oligodendrocytes respond to the depolarization caused by neuronal stress and reduced effectiveness of the glutathione system. The many adverse effects of fetal alcohol exposure on behaviour and learning are caused by a multitude of effects on all three types of glia cells. Traumatic brain injury also exerts multifactorial effects, including microglia/astrocyte-induced secretion of neuroinflammatory molecules and axonal disruption and oligodendrocytic dysfunction. In normal brain oligodendrocytes respond to the depolarization caused by neuronal stress and reduced effectiveness of the glutathione system.

Dr. Christina N. Thebeau 2014 Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor signaling is a key component of neuroplasticity and neuroprotection. Therefore, understanding the role of purinergic receptors in the brain is essential for developing new therapeutic strategies to treat neurological disorders.

Dr. Ka-Meng Chui 2017-01-27

Although microglia and macrophages share several common features, upon M1 and M2 polarizing conditions, they are believed to develop distinct phenotypic and functional differences. Activated microglia/macrophages can be classified into M1 and M2 subtypes based on their functional profiles. M1 macrophages are pro-inflammatory and cytokine-producing, whereas M2 macrophages are anti-inflammatory and promote tissue repair. The role of microglia/macrophages in neurodegenerative diseases is complex and depends on the disease state and the microglial/macrophage phenotype. Microglia/macrophages contribute to the pathology of neurodegenerative diseases by promoting inflammation and neurodegeneration, and by mediating the clearance of neuronal debris.

Dr. Andreas Reichenbach 2011-02-18

Neuroprotection is a key concept in the treatment of neurodegenerative diseases, and the development of novel therapeutic strategies is critical to improving the outcomes for patients with these conditions. Neuroprotection strategies aim to preserve the existing neural structures or to promote the survival and function of existing neurons. The protective effect of neuron-glia interactions may be critical for the development of new therapeutic strategies to prevent or delay the progression of neurodegenerative diseases.

Dr. Leif Hertz 2016-11-23

The many adverse effects of fetal alcohol exposure on behaviour and learning are caused by a multitude of effects on all three types of glia cells. Traumatic brain injury also exerts multifactorial effects, including microglia/astrocyte-induced secretion of neuroinflammatory molecules and axonal disruption and oligodendrocytic dysfunction. In normal brain oligodendrocytes respond to the depolarization caused by neuronal stress and reduced effectiveness of the glutathione system.
Neuroglia

The term neuroglia refers to various types of glial cells that play a crucial role in the nervous system. These cells include astrocytes, oligodendrocytes, and microglia, among others. They are essential for maintaining the healthy functioning of neurons by providing structural support, insulating neural pathways, and protecting the brain from damage. Neuroglia are also involved in various neurophysiological processes, such as the release of neurotransmitters and the regulation of neuronal activity.

Microglia

Microglia are a type of neuroglial cell that is specialized for monitoring and responding to changes in the neuronal environment. They are the primary phagocytes in the brain and contribute to the immune response by removing debris and pathogens. Microglia play a critical role in the development and maintenance of the brain's microenvironment, and their activation can contribute to neurodegenerative diseases.

Cellular and Molecular Neurophysiology

This field examines the physical and chemical properties of neurons and how they transmit information. It includes the study of ion channels, neurotransmitters, and synaptic plasticity, among other topics. Understanding the mechanisms of neural signaling is crucial for developing effective treatments for neurological disorders.

Glial Cells: Their Relationships with Neurons

Glial cells, including astrocytes and oligodendrocytes, have close interactions with neurons, providing support and protection. They help maintain the extracellular environment, remove waste products, and communicate with neurons through specialized processes. The interplay between glial cells and neurons is essential for normal brain function and is disrupted in various neurological diseases.

Neuroglia

Neuroglia refers to the glial cells in the nervous system, which include astrocytes, oligodendrocytes, and microglia. They provide structural support, maintain the extracellular environment, and participate in the regulation of neuronal activity. Understanding the roles of these glial cells in the nervous system is crucial for developing effective treatments for neurological disorders.